Pedestrian facilities: engineering and geometric design
Pedestrian facilities: engineering and geometric design

Jon Schoon
University of Southampton
Contents

Preface xi

Introduction 1
The need for improved pedestrian facilities 1
Information sources 5
Definitions of terms 8
Analysis and design of pedestrian facilities: definitions 10
Pedestrian facilities analysis and design process 12
Legal framework 14
Monitoring the pedestrian environment 14
Areas of potential improvement to analysis and design of pedestrian facilities 15
The context: quality of the pedestrian experience 19
Summary and conclusions 19
References 20
Appendix A: a legal framework (MfS, DfT 2007) 21

1 **Codes of conduct – The Highway Code** 28
Highway user operations: The Highway Code 28
Objectives and practice 29
Highway Code rules 30
Status of The Highway Code and application to geometric design 38
Summary 40
References 40

2 **Driver and vehicle characteristics** 41
Parameters describing driver and vehicle characteristics 41
Vehicle speed 42
Stopping sight distance 49
Driver’s viewpoint 61
Contents

7 **Signalled pedestrian crossings – geometric design** 174
 Geometric design and signalisation 174
 Criteria for provision of signalled crossings 175
 Signal-controlled crossings: types and components 176
 Geometric design of signalled crossings 178
 Influence of urban traffic control systems on geometric design of signalled crossings 186
 Puffin pedestrian crossings: nearside pedestrian signals (TAL 5/05 (dFt 2005) and LTN 2/95) 187
 Summary 196
 References 196

8 **Facilities for inclusive mobility: design guidelines** 198
 Information sources 198
 Human factors 199
 Footway and related dimensions 199
 Tactile paving surfaces 208
 Transfer to and from other modes of transport 209
 Shared surface street design 215
 Executive summary – concerns with shared surfaces 216
 Summary 218
 References 218

9 **Pedestrian facilities at roundabouts** 220
 General 220
 Objectives 221
 Types of roundabouts 223
 Siting of roundabouts 224
 Road users’ specific requirements 226
 Design hierarchy 229
 Geometric design – pedestrian aspects 229
 Summary 232
 References 232
Contents

14 Simulation and computerised models of pedestrian facilities
 VISSIM 324
 Ped ISI and Bike ISI 327
 Legion 333
 Summary 339
 References 339

15 Examples and case studies 341
 Background 341
 Example 1: crossing at unsignalled trunk road and entrance to residential street of a medium-sized town 341
 Example 2: signalised pedestrian crossing of an inner city road adjacent to a pedestrianised area 344
 Example 3: replacement of staggered signalised crossing with straight across crossing 348
 Example 4: context report for non-motorised user audit of preliminary design stage 352
 Summary 357
 References 358

Index 359
Preface

Engineering the geometric design of pedestrian facilities is the focus of this book. The emphasis is on numerical, functional aspects of designing footways, uncontrolled and controlled crossings along roads and at junctions, roundabouts and driveways where pedestrian and vehicular traffic interact, based upon practice in the UK. These are the places where most pedestrian fatalities and injuries due to collisions with motor vehicles occur. Such places are where people are most concerned about the safety of walking and, therefore, about making a decision to walk or use some other mode of transport to achieve their desired mobility. Also addressed are pedestrian safety and comfort of facilities designed to achieve inclusive mobility, and recent developments in computerised demand and design methods. Design of facilities for other non-motorised users (NMUs) is addressed in terms of joint use with pedestrian facilities, and the book complements other works on the needs of cycle (including on-street and at crossings) and equestrian travel.

Intended for use by practitioners and students involved in civil engineering aspects of design projects for highways and public spaces, the book provides design information intended to assist urban planners, architects and the wide range of people involved with facilities within the public realm in the UK. In addition, because of the numerous instances where factual, evidence-based, analysis and design of pedestrian facilities is unavailable, it is hoped that researchers will find throughout the book a basis for investigating the interaction of pedestrians, infrastructure and motor vehicle traffic. This may help to establish a body of engineering and design knowledge on pedestrian facilities to compare with that available for vehicular transport.

Engineering and geometric design, which determine the layout and dimensions of the visible elements of the footways and crossings, are integral parts of the aesthetic, social and community aspects of providing facilities for pedestrians, other non-motorised traffic and
Pedestrian facilities: engineering and geometric design

vehicular traffic. This book, therefore, complements and augments the many texts and guidance on these subjects and on the public realm environment and highway engineering, and draws together material from many, often overlapping, sources. The concentration throughout is on the detailed, numerical, engineering analysis and design of individual elements of a pedestrian's route. This focus recognises that no matter how well the overall route and its environs are planned and executed or how attractive aesthetically the route may be, if the locations where pedestrians and motor traffic interact are perceived to be unsafe, the overall route will be judged unsafe and intimidating, and pedestrians will be reluctant to use it. For any pedestrian's journey, only one junction, for example, that is perceived by a pedestrian to be unsafe can render the entire route unacceptable. A basic premise, therefore, is that design of pedestrian facilities and their affected environs should be based upon the pedestrian's perspective of functionally and safety. Consequently, design procedures should, wherever possible, incorporate evidence-based physical and movement characteristics of people who use the facility, and in accordance with established codes of conduct.

The geometry of roads (which include pedestrian ways) where pedestrians interact with motorised vehicles is responsive to and determined by a wide variety of physical, operational and human factors. Physical factors include the carriageway and footway dimensions, and horizontal and vertical alignments, proximity of obstructions, and property lines. Operational features include vehicle speeds and stopping distances, road markings, signs and signals, substantially as described in The Highway Code and related publications. Human factors include cultural, physical and mental abilities, reaction and walking speeds, visual ability, and the extent of pedestrians' disabilities or encumbrances. Overlaying these direct variables on the design process are the policy, educational, enforcement and cost factors affecting all road users and responsible authorities – matters which must be left to other works than this one to address.

Pedestrian facilities design information (over 30 individual publications as of the year 2009) used in the UK, published by governmental agencies and by transportation and urban design organisations, provide a source of references for guidance during the design process. Often, the bases for such guidance are expressed in qualitative, rather than numerical terms, and the associated features and dimensions are based upon accumulated experience and assumption about how reasonable road users may be expected to behave. Consequently, several of the
chapters on physical design described in the book repeat the main
dimensional features and elements as shown in guidance documents,
without further comment on the analytical aspects of how such features
were derived. Such documents may include dimensions such as space
requirements of pedestrians (especially disabled people and their
space needs). They therefore provide a guide to pedestrian facilities
design as practiced by local, regional and national authorities.

Appropriate detailed geometric design of the facilities along a pedes-
trian’s route is an essential element in a person deciding whether a
walking trip is acceptable or, for many disabled or elderly people or
children (nearly 25% of the population) even possible. Safety – the
underlying requirement for acceptable design as presented here – is
regarded as an essential prerequisite for mobility. Of course, safety,
mobility and accessibility must exist alongside other key factors such
as urban design, aesthetics, environmental, community, policy and
related issues. Too often, crossings where pedestrians cannot
adequately see oncoming vehicles, footways too narrow to adequately
pass, refuges too narrow to adequately accommodate an adult with
small children, crossings at junctions with large radii, and signals that
do not offer sufficient time to cross, can intimidate pedestrians and
reduce the number of walking trips. The contrast to the comfort and
perceived safety of an equivalent trip by car could not be greater.
The results of such a contrast are excessive dependence on car use,
decreased health, decreased access to essential services and, often, a
feeling of exclusion for the large portion of people who must depend
on walking as a means of attaining independence and social interaction.

The approach adopted in the book also assumes that, because design
of pedestrians facilities is usually inseparable from that of the adjacent
facilities for motorised traffic, a basic knowledge of highway engineering
is essential. Elements may also assist forensic engineering in that refer-
ence is sometimes made to underlying principles where assumptions
about UK design practice is not founded on documented evidence. In
such cases, further research may be needed to justify or modify
current assumptions.

The essential features of the approach adopted are shown in the
chart of Figure 1. First, the introduction describes the current frame-
work under which most design of pedestrian facilities is conducted in
the UK. It outlines features of the context in which geometric design
of pedestrian facilities is undertaken such as highway and street
classification, information sources, the analysis and design process,
the institutional and legal setting. Importantly, it also indicates some
of the areas where design of pedestrian facilities may be made more responsive to the needs of the walking public. The main features of Parts 1 through 4 are outlined below.

Part 1: User characteristics – addresses the underlying theory and available parameters associated with driver and pedestrian behaviour and design rationale, including material documented in British publications on which the UK’s design guidance is based. A brief description of *The Highway Code* is included as an important, though not often quoted, descriptor of required road users’ conduct, and of which physical designs must recognise. The basic characteristics described in this part are also intended to assist research that focuses on improvements to pedestrian facilities which focus on fundamental aspects of all road users’ behaviour, mobility needs and associated design parameters.
Part 2: Design practice – comprises mostly current practice as described in governmental guidance and advice. General road layout practice (including home zones and shared space and/or surfaces), at-grade crossings at unsignalled crossings, and an introduction to design practice to ensure inclusive mobility leads to geometric design of the pedestrian elements of signalled junctions, roundabouts and facilities shared with other non-motorised users. Due to the extensive coverage in numerous governmental and institutional publications, the material described is selective and is intended to address key aspects as a guide to more detailed engineering design.

Part 3: Performance analysis and monitoring – addresses processes and methods of evaluating pedestrian schemes in order to improve and refine specific designs. Auditing, pedestrian facilities capacity estimation and simulation using computerised methods are the main interests here.

Part 4: Project implementation – this final part briefly provides a selection of examples and projects – extensively based on pedestrian facilities design projects and incorporating aspects of analysis that assist in key elements of the design and evaluation.

Provision of adequate pedestrian facilities affects and is affected by many often conflicting factors, from the skill of workers repairing a broken paving slab to national government’s transport policy. The focus in this book is on one essential element of the spectrum of factors, i.e. detailed geometric design. This focus is deliberate, perhaps to the excessive exclusion of the other elements. It is hoped that readers will understand the intent of this approach.

There is clearly a need for safe and convenient pedestrian facilities in light of the 3000 pedestrian fatalities and serious injuries experienced on the roads of the UK each year. From a humanitarian and social perspective alone, it would generally be agreed that this statistic represents an unacceptable condition. Furthermore, in light of increasing concerns about the environment and attempts to reduce motor vehicles usage, such a figure may well underlie the reluctance of people to walk rather than drive for many short trips. The author hopes that these notes will help to address many of these concerns, thereby improving the safety and attractiveness of walking and, in doing so, improve the sustainability of our increasingly vulnerable environment.