Managing in Construction
Supply Chains and Markets

Reactive and Proactive Options for
Improving Performance and
Relationship Management

Andrew Cox, Paul Ireland and Mike Townsend
Contents

Preface xi
References xv

Part A Introduction 1

Chapter 1 The performance and relationship optimisation problem in construction 3
1.1 Introduction 3
1.2 Demand and supply structures in construction supply chains and markets 4
1.3 Inherent problems of performance optimisation in construction supply chains and markets 8
1.4 Recent recommendations to resolve the endemic problems in construction supply chains and markets 13
1.5 Have collaborative and partnering relationship management approaches achieved what was expected in performance improvement terms? 18
References 21

Chapter 2 The power and leverage perspective: an alternative view of relationship and performance management 28
2.1 Introduction 28
2.2 The power and leverage perspective on relationship management and performance optimisation 29
2.3 Sourcing options available for managing buyer and supplier exchange 32
2.4 Relationship management styles and power regimes 37
2.5 A way of thinking about ‘appropriateness’ in buyer and supplier exchange 40
References 45

Chapter 3 The problem of win–win in construction management: feasible relationship and performance outcomes 48
3.1 Introduction 48
3.2 Current thinking about win–win and mutuality in business and construction management 50
3.3 The essentially contested nature of dyadic exchange 52
3.4 On the commensurability of value capture and mutuality 55
3.5 Appropriateness in construction relationship management and performance optimisation 59

References 63
Forthcoming title 64

Part B1 Cases in construction relationship management and performance outcomes: reactive sourcing approaches 65

Chapter 4 The logistics warehouse case: reactive supply chain sourcing with a buyer win and supplier partial win outcome 67

4.1 Introduction 67
4.2 Background to the case: the construction of a logistics warehouse 68
4.3 The buyer–supplier relationship management approach 71
4.4 Performance outcome from the buyer–supplier relationship 73
4.5 Summary 77

Chapter 5 The sports stadium case: reactive supply chain sourcing with a buyer win and supplier lose outcome 79

5.1 Introduction 79
5.2 Background to the case: the construction of a major sports stadium 80
5.3 The buyer–supplier relationship management approach 85
5.4 Performance outcome from the buyer–supplier relationship 87
5.5 Summary 91

Chapter 6 The corporate office and manufacturing facility case: reactive supplier selection with a buyer partial win and supplier win outcome 93

6.1 Introduction 93
6.2 Background to the case: the construction of a corporate office and manufacturing facility 94
6.3 The buyer–supplier relationship management approach 99
6.4 Performance outcome from the buyer–supplier relationship 101
6.5 Summary 104

Chapter 7 The healthcare facility case: reactive supplier selection with a buyer partial win and supplier partial win outcome 105

7.1 Introduction 105
7.2 Background to the case: the construction of a major healthcare facility 106
7.3 The buyer–supplier relationship management approach 109
7.4 Performance outcome from the buyer–supplier relationship 111
7.5 Summary 114
Reference 115
Chapter 8 The motorway case: reactive supplier selection with a buyer partial win and supplier lose outcome
8.1 Introduction
8.2 Background to the case: the construction of a major motorway
8.3 The buyer–supplier relationship management approach
8.4 Performance outcome from the buyer–supplier relationship
8.5 Summary

Chapter 9 The heavy engineering plant case: reactive supply chain sourcing with a buyer lose and supplier win outcome
9.1 Introduction
9.2 Background to the case: the construction of a heavy engineering plant
9.3 The buyer–supplier relationship management approach
9.4 Performance outcome from the buyer–supplier relationship
9.5 Summary

Chapter 10 The water pipeline case: reactive supply chain sourcing with a buyer lose and supplier partial win outcome
10.1 Introduction
10.2 Background to the case: the construction of a major water pipeline
10.3 The buyer–supplier relationship management approach
10.4 Performance outcome from the buyer–supplier relationship
10.5 Summary

Chapter 11 The manufacturing facility extension case: reactive supplier selection with a buyer lose and supplier lose outcome
11.1 Introduction
11.2 Background to the case: the construction of an extension to a manufacturing facility
11.3 The buyer–supplier relationship management approach
11.4 Performance outcome from the buyer–supplier relationship
11.5 Summary

Part B2 Cases in construction relationship management and performance outcomes: proactive sourcing approaches

Chapter 12 The restaurant construction case: proactive supply chain management with a buyer win and supplier partial win outcome
12.1 Introduction
12.2 Background to the case: the construction of a prefabricated restaurant facility
12.3 The buyer–supplier relationship management approach

References
12.4 Performance outcome from the buyer–supplier relationship 172
12.5 Summary 175

Chapter 13 The multi-storey car park case: proactive supply chain management with a buyer win and supplier lose outcome 177
13.1 Introduction 177
13.2 Background to the case: the construction of a multi-storey car park 177
13.3 The buyer–supplier relationship management approach 182
13.4 Performance outcome from the buyer–supplier relationship 184
13.5 Summary 188

Chapter 14 The aerospace manufacturing facility case: proactive supplier development with a buyer partial win and supplier win outcome 190
14.1 Introduction 190
14.2 Background to the case: the construction of an aerospace manufacturing facility 191
14.3 The buyer–supplier relationship management approach 194
14.4 Performance outcome from the buyer–supplier relationship 196
14.5 Summary 199

Chapter 15 The residential, office and entertainment complex case: proactive supplier development with a buyer partial win and supplier partial win outcome 201
15.1 Introduction 201
15.2 Background to the case: the construction of a residential, office and entertainment complex 201
15.3 The buyer–supplier relationship management approach 206
15.4 Performance outcome from the buyer–supplier relationship 207
15.5 Summary 211

Chapter 16 The high street public house case: proactive supplier development with a buyer partial win and supplier lose outcome 213
16.1 Introduction 213
16.2 Background to the case: the refurbishment of a high street public house 214
16.3 The buyer–supplier relationship management approach 218
16.4 Performance outcome from the buyer–supplier relationship 220
16.5 Summary 223

Chapter 17 The housing development case: proactive supplier development with a buyer lose and supplier win outcome 226
17.1 Introduction 226
17.2 Background to the case: the construction of a major new housing development 227
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.3</td>
<td>The buyer–supplier relationship management approach</td>
<td>234</td>
</tr>
<tr>
<td>17.4</td>
<td>Performance outcome from the buyer–supplier relationship</td>
<td>235</td>
</tr>
<tr>
<td>17.5</td>
<td>Summary</td>
<td>239</td>
</tr>
</tbody>
</table>

Chapter 18 The petrol filling station case: proactive supply chain management with a buyer lose and supplier partial win outcome

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.1</td>
<td>Introduction</td>
<td>241</td>
</tr>
<tr>
<td>18.2</td>
<td>Background to the case: the construction of a petrol filling station</td>
<td>242</td>
</tr>
<tr>
<td>18.3</td>
<td>The buyer–supplier relationship management approach</td>
<td>245</td>
</tr>
<tr>
<td>18.4</td>
<td>Performance outcome from the buyer–supplier relationship</td>
<td>246</td>
</tr>
<tr>
<td>18.5</td>
<td>Summary</td>
<td>250</td>
</tr>
</tbody>
</table>

Chapter 19 The leisure and sports complex case: proactive supplier development with a buyer lose and supplier lose outcome

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.1</td>
<td>Introduction</td>
<td>252</td>
</tr>
<tr>
<td>19.2</td>
<td>Background to the case: the construction of a leisure and sports complex</td>
<td>253</td>
</tr>
<tr>
<td>19.3</td>
<td>The buyer–supplier relationship management approach</td>
<td>256</td>
</tr>
<tr>
<td>19.4</td>
<td>Performance outcome from the buyer–supplier relationship</td>
<td>258</td>
</tr>
<tr>
<td>19.5</td>
<td>Summary</td>
<td>262</td>
</tr>
</tbody>
</table>

Part C Conclusions

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
</table>

Chapter 20 Beyond win–win: understanding relationship and performance management options for buyers and suppliers in construction

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.1</td>
<td>Introduction</td>
<td>267</td>
</tr>
<tr>
<td>20.2</td>
<td>Appropriateness in relationship management and the problem of non-commensurable performance outcomes</td>
<td>268</td>
</tr>
<tr>
<td>20.3</td>
<td>A contingency approach to effectiveness in construction management</td>
<td>278</td>
</tr>
</tbody>
</table>

References | 283 |

Index | 285 |
Preface

This is the third book about relationship and performance optimisation in construction supply chains and markets in a series undertaken as part of a continuous collaboration between researchers at the Centre for Business Strategy and Procurement (CBSP) at Birmingham Business School and Newpoint Consulting Ltd. This collaboration commenced in 1994 when Mike Townsend, the CEO of Newpoint Consulting, began work with Andrew Cox at the CBSP to investigate the benefits of partnering approaches in the construction industry as part of a British Airports Authority (BAA)-funded project. That research led to the publication by Thomas Telford of *Strategic Procurement in Construction* (Cox and Townsend, 1998) and a companion piece, funded by a research grant from London Underground and Railtrack, entitled *Contracting for Business Success* (Cox and Thompson, 1998). In the intervening years work on construction, as well as other relationship and performance management issues, has continued both at the CBSP and in Newpoint Consulting.

Now, due to this extensive experience by Newpoint Consulting in the construction industry, and the generous funding over the last three years by the Chartered Institute of Purchasing and Supply of more detailed research into construction supply chains and markets, it has been possible to produce a third book. In this book, it has been possible to provide a much more detailed insight into the full range of relationship and performance management outcomes that are feasible in construction supply chains and markets, as well as a more detailed understanding of the appropriateness of different ways of working under specific supply chain and market conditions.

The primary focus of this book is on how buyers and suppliers in construction relationships can optimise their own performance. The optimisation of the performance of exchange partners is also considered. This is, however, a secondary concern because, while the performance of exchange partners is obviously an issue for both buyers and suppliers in all business relationships, their primary concern must always be with their own performance. In this sense, assisting the performance of an exchange partner may be important for the performance of the other, but, in the end, it may not be.

We recognise that this may not be the current dominant thinking in the industry, where the attachment to partnering principles in recent years has generated an enthusiasm for considering the optimisation of everyone’s performance in construction supply chains and markets. Our view is that while optimising the performance of exchange partners may be a legitimate concern for actors involved in supply chains and markets, it is not the best way to think about performance optimisation. This is because, while it can be a sensible approach if relationships need to be sustained over the long-term, it may be sub-optimal in the short-term when relationships do not need to be sustained.
This implies, as we shall see in what follows, that in construction – where long-term relationships based on high levels of bilateral dependency are not always necessary for either the buyer or the supplier to achieve their commercial goals – achieving outcomes that are equally beneficial to both parties may, but they may not, be essential. If this is the case then the management problem in construction supply chains and markets must be to decide whether it is essential to develop long-term and highly collaborative (partnering) relationship management approaches, or whether these should be replaced by relatively short-term and arm’s-length (opportunistic) buyer and supplier interactions.

This way of thinking clearly takes issue with those writers who argue that ‘best practice’ in construction relationship management is always to develop highly collaborative approaches based on high levels of trust and transparency in preference to opportunistic and adversarial approaches. These approaches – sometimes referred to as partnership sourcing, project partnering and relationship marketing – have been the dominant ways of thinking about construction ‘best practice’ since the publication of the Latham and Egan Reports (Latham, 1994; DETR, 1998) into the problems facing the industry. This book, while not rejecting these approaches, argues that they can only be appropriate ways of working for particular actors under specific construction supply chain and market circumstances. When these circumstances do not occur then alternative supply chain and market management approaches will be appropriate.

The central premise of this book is, therefore, that, while there may be opportunities for some buyers and suppliers to develop highly collaborative exchange relationships in construction, the majority of relationships will continue to be managed on a short-term and relatively opportunistic, arm’s-length basis. Furthermore, it is argued that there is nothing fundamentally flawed in the management of construction relationships using highly opportunistic and arm’s-length ways of working. In practice, the performance and relationship optimisation problem in construction supply chains and markets is about appropriateness. This means that buyers and suppliers both have to choose wisely from a range of relationship management approaches – some of which may be commercially adversarial or non-adversarial, and some of which may be operationally collaborative or arm’s-length.

It is also argued that, when making appropriateness choices, while the idea of developing win–win outcomes in which both parties fully achieve all that they ideally desire is an appealing idea, it has no basis in reality when an objective (economically rational) view is taken of commercial exchange between buyers and suppliers. This means that positive-sum (win–win) outcomes are not objectively feasible, and that only more restricted forms of mutuality (nonzero-sum or mutually beneficial) outcomes (based on win–partial win and partial win–partial win), or zero-sum outcomes (based on win–lose and partial win–lose) are achievable in buyer and supplier exchange (Cox, 2004a, b). As a result, the desire to achieve outcomes that optimise the performance of both parties in an exchange relationship may represent a serious misunderstanding of buyer and supplier exchange – both in construction specifically, and in business relationship management in general.

This is, however, to run ahead of the discussion presented here. In Part A, Chapter 1 provides an introduction to the performance and relationship optimisation problem in construction supply chains and markets. It is argued that, even though writers from the relational school of writing contend that developing trusting and transparent, non-adversarial and highly collaborative approaches to relationship management is the best way to optimise performance, construction
supply chains and markets have unique and distinct demand and supply characteristics that often militate against the development of longer-term and highly collaborative ways of working.

Given this, most construction supply chain and market relationships will remain essentially short-term and operationally arm’s-length, whatever proponents of more collaborative relationship management approaches may desire. This chapter shows that the optimisation problem for buyers and sellers in construction supply chains is, as a result, one in which there is an inherent tendency for most relationships to be managed by both parties in a commercially opportunistic manner. This does not mean that such an approach is always necessary, but that it is inherently likely because of the power structures that exist in a mainly project environment rather than process supply chain environment.

Following this discussion of the inherent problems facing managers in construction supply chains and markets, Chapter 2 outlines the power and leverage perspective on relationship and performance management. This school argues that while collaborative ways of working may be appropriate for some actors in some construction supply chains and markets they are not appropriate ways of optimising performance for all actors. On the contrary, it is argued that only a limited number of actors, who possess key power resources in construction supply chains and markets, will be able to undertake collaborative approaches effectively. Furthermore, this school contends that when undertaking collaborative relationships unconditional trust and absolute transparency of operational and commercial trade-offs may be naïve, and also that, in the absence of collaboration, opportunistic arm’s-length relationship management may be a highly desirable way of working for either the buyer or the seller.

This discussion is informed by an analysis of the range of relationship management and performance optimisation approaches that are available to buyers and suppliers. This provides a way of thinking about the relationship management and performance optimisation choices that may be more or less appropriate for managers to utilise when they act as buyers or as suppliers in construction supply chains and markets. It is argued that buyers and suppliers can interact using essentially reactive or proactive ways of working, and that there are essentially two reactive (supplier selection or supply chain sourcing) and two proactive (supplier development and supply chain management) approaches that are feasible in buyer and supplier exchange (Cox et al., 2003).

Unfortunately, as Chapter 3 shows, it is not always possible for both parties to an exchange to fully achieve their ideal commercial and/or operational goals when they operate within these four relationship management approaches. Sometimes the buyer will achieve much more than the supplier and vice versa, or the buyer or supplier will win and their exchange partner will lose operationally and commercially. This is essentially because exchange is contested and win–win outcomes are not feasible in relationships between buyers and suppliers (Cox, 2004a, b).

Given these conclusions, sixteen short empirical case studies (in Chapters 4 to 19 in Parts B1 and B2) provide an overview of the relationship management and performance optimisation outcomes that can occur in construction supply chains and markets. These case studies show that it is possible for buyers and suppliers to operate using highly proactive and collaborative, as well as highly reactive and arm’s-length ways of operational and collaborative working. Furthermore, as the cases show, when either proactive or reactive ways of working are selected, while it may be impossible for positive-sum (win–win) outcomes to occur, it is
possible for nonzero-sum (win–partial win and partial win–partial win) and zero-sum (win–lose and partial win–lose) outcomes to occur. This demonstrates that when managers make decisions about relationship management approaches there can be very different performance optimisation outcomes within them for the buyer and the supplier.

The sixteen cases demonstrate, therefore, that, when it comes to optimising individual performance, some relationship management choices may be operationally and commercially superior to others for both buyers and suppliers. This means that making choices about different ways of working for construction buyers and suppliers is not just a simple choice between proactive and collaborative or reactive and arms-length. On the contrary, although the Latham and Egan Reports have tended to coach the choice in these simplistic terms, it is clear from the analysis presented here that buyers and suppliers sometimes have reactive options that are superior to all of the proactive choices available to them, and vice versa. Furthermore, the analysis shows that when making decisions about proactive and reactive options there are also options available that provide buyers and suppliers with involvement only at the first tier (market-only) or throughout the whole supply chain. In making decisions about reactive or proactive relationship management, therefore, buyers and suppliers also have to consider their market and supply chain options.

This more comprehensive understanding of the complexity of available relationship management choices for buyers and suppliers in construction supply chains and markets provides the basis for a final discussion in Part C (Chapter 20) of the implication for relationship management and performance optimisation. The final chapter demonstrates that although there are sixteen broad relationship and performance optimisation outcomes that are feasible in buyer and supplier exchange, the majority of outcomes in construction, as in all other forms of business-to-business exchange, occur in the nonzero-sum (partial win–partial win) category. Despite this, even when nonzero-sum or mutuality outcomes occur it is not the case that both parties in an exchange relationship will be equally satisfied with the performance outcome.

In the final chapter the essentially contested nature of exchange in construction is explained by reference to the fact that, given the nature of the demand and supply characteristics of this industry and the power structures it creates, opportunism and reactive arm’s-length relationship management rather than proactive collaborative options are often preferable for most exchange partners. This means that in the project-based side of construction zero-sum outcomes are likely to be more frequent than is the case in many other industries. As a result, while there is scope for proactive relationship management approaches based on trust, transparency and collaboration, these may not be feasible for all actors in the industry.

The final chapter also provides some pointers for managers when they think about appropriateness in selecting relationship management options. It is hoped that this will assist managers in construction to understand when it is, and when it is not, appropriate to utilise reactive or proactive approaches, and how they should think about performance optimisation for themselves and their exchange partners. It is hoped that, by presenting this more detailed account of the types of relationship and performance approaches and outcomes that can occur in construction supply chains and markets, practitioners will be able to select more wisely from alternative ways of working. In doing so it is also hoped that they can achieve far more success in their relationship and performance management.
approaches than appears to be the case given the high level of sub-optimality that is currently endemic throughout the industry.

If this book provides an opportunity for practitioners to understand the full range of relationship choices available to them – whether these are reactive or proactive – to leverage improvements in performance then it will have served its purpose. We are grateful for the forbearance of Thomas Telford Publishing and its editors in granting many extensions to a gestation process that has been longer than we would have preferred. We would also like to thank Jackie Potter and Michelle Donovan for their invaluable support in putting this manuscript together. Any sins of omission or commission are, of course, ours alone.

References

Despite the low levels of expenditure on innovation there have been significant technological advances with actual construction products and services. This has opened up a wide range of different sourcing and relationship management possibilities. From the continuum of construction products and services (routine commodity components to highly specialised and critical services), the gamut of possible buyer and supplier relationships ranges from purely independent transactional, short-term price-based interactions, to highly interdependent relationships that may involve a considerable long-term investment by both parties.

Within the UK construction industry, therefore, a myriad of construction supply chains and markets need to be integrated by any construction firm when it delivers a solution to an end customer (client). Figure 1.1 suggests that the key generic supply chains required for a typical solution are rather simple and linear but the reality is quite different. The ultimate level of complexity involved with the management of a construction project will be determined by the extensive requirements of the end customer as defined in the design and specification. It is difficult to quantify the exact number of constituent material, equipment and labour supply chains that have to be integrated into a ‘typical’ project because such a project does not exist, due to the ubiquity of its unique project-specific requirements.

During the construction process, the end customer (the client) often requires professional services to ensure a level of professionalism and to guard against supplier opportunism that is rife within the industry. These professional services may include a wide range of capabilities: project management, design and architecture, civil engineering, structural engineering, services engineering, quantity surveying and independent cost consultancy. These services provide the detailed design, planning and project management expertise that is fundamental to a successful project and the avoidance of the problems widely experienced by clients.

Within the generic supply chain the first-tier construction firm plays the major ‘integrating’ role for all upstream supply chains. There is, however, a high degree of subcontracting within the industry, with main (first-tier) contractors, faced with irregular demands from clients, appointing second-tier companies to deliver ‘packages’ that can be easily integrated within the final solutions. These packages may include groundworks, steel fabrication or mechanical and electrical products and services. For each of these elements there will be a requirement to source from additional upstream labour, materials and equipment supply chains.

Throughout the project procurement process little control or management of the entire supply chain is normally taken up by the focal organisation – the client (London et al., 1998; London and Kenley, 1999). As a result, each organisation in a tier is able to manage its supply relationships in such a way that it can effectively act as a procurement gatekeeper. The first-tier organisation typically acts as a gatekeeper to the subcontractors’ tiers of suppliers and each trade subcontractor subsequently acts as a gatekeeper to the materials suppliers operating at the third-tier. Furthermore, the relatively unmanaged use of subcontracting within the industry increases the endemic problems associated with opportunism.

One of the primary reasons given for opportunism in the industry is related to the one-off nature of demand that characterises relationships between buyers and suppliers. It is often argued that the construction industry is unique in the way that it establishes projects to deliver one-off products (Burbridge and Fulster, 1993; Cutting-Decelle, 1997; Cox and Thompson, 1998; Cox and Townsend, 1998; Cox and Ireland, 2001, 2002a, b). It is the client who takes the initiative to start a construction project, and this leads to the frequent conceptualisation of
CONSTRUCTION SUPPLY CHAINS

END CUSTOMER

This stage includes all customers of construction projects. These clients typically source their construction requirements from highly competitive construction supply markets. The construction project provides the required functionality to support their business.

CONSTRUCTION OR CIVIL ENGINEERING FIRM

This stage includes all civil engineering and construction firms that deliver projects to the end customer. These firms play the ‘integrating’ role for all the constituent construction supply chains and typically operate within a highly competitive marketplace.

PROFESSIONAL SERVICES FIRMS

This stage includes all professional services firms that provide engineering, design, planning, etc. services. These firms typically operate within highly competitive marketplaces.

MATERIALS SUPPLY CHAINS

MATERIALS SUPPLIERS

There are a multitude of suppliers who provide the necessary components for construction projects.

RAW MATERIALS/COMPONENT SUPPLIERS

LABOUR SUPPLY CHAINS

SUBCONTRACT LABOUR

There are a number of different mechanisms through which individuals can be employed.

LABOUR MARKET

EQUIPMENT SUPPLY CHAINS

EQUIPMENT PROVIDERS

This may be through purchase, lease or rental.

EQUIPMENT MANUFACTURERS

Figure 1.1 The myriad of construction supply chains (Source: Cox and Ireland (2001), p. 221)
the construction supply chain as a process explicitly starting and ending with the end user.

A common representation of the construction process, as shown in Figure 1.2, starts with an initiative by the client to demand a constructed asset, for example a factory or office complex. After establishing a construction project organisation to provide the necessary competence and expertise to finalise the design and specification, the client will undertake a tendering process to select a main contractor. In most cases, the main contractor will take care of employment of subcontractors and the procurement of materials. When contracts are formalised, and a sufficient amount of information is available, the physical execution of the construction project can start. This includes production of materials, manufacturing, engineering and assembly of elements, and final construction on site. After the successful completion of the project, there will be the hand-over and use of the completed asset by the end user (Hughes, 1991; Luhtala et al., 1994; Potts, 1995; Vrijhoef, 1998; Alarcón et al., 1999; Kagioglou et al., 2000).

The final project-specific construction supply chain that arises is, however, a system of multiple supply chains delivering all raw materials, human resources and information required for the successful completion of a project to the place where the specific end product must arise. With limited prefabrication, construction is largely a site operation, confined to the specific location where the final assembly takes place (Nam and Tatum, 1988; Westling, 1991). Construction often takes place, therefore, at the place of consumption, as opposed to the wide and less-specific end market of manufacturing industry.

For this reason construction projects tend to be temporary (Cleland and King, 1983; Cleland and Kurznner, 1985; Turner, 1993a,b; Morris, 1997; Murray-Webster and Thiry, 2000; Turner and Keegan, 2001; Turner and Simister, 2001; Turner and Müller, 2003). In contrast to manufacturing, this implies a temporary organisation of production for each project characterised by a short-term coalition of participants with frequent changes of membership, often termed ‘temporary

Figure 1.2 Typical representation of the construction process (Adapted from: Vrijhoef (1998) and Luhtala et al. (1994))
Index

Page numbers in italics refer to charts and diagrams. The suffix ‘n’ indicates a reference to a footnote.

adversarial arms'-length relationship management	40		
adversarial collaboration relationship management	40		
aerospace manufacturing facility case	buyer profile 191, 193–194	performance outcome 196–199	
	specifications 191	summary 199–200	
	supplier profile 194	supply chains 192	
agile approach, construction industry	15–16, 271–272		
architects, as professional service providers	106		
brownfield sites	development of 191		
	planning approval 94–96		
buyer dominance, serial demands, standardised	272		
buyer-supplier relationships	appropriateness 267		
	collaboration 38–40, 43		
	competence in 267–268		
	conflicts within 54–55, 54, 134, 146–147		
	as exchange relationships 52–53		
	inappropriateness 40–41		
	independence 270		
	interdependence 35, 37, 41, 270		
	housing development case 234–236		
	multi-storey car park case 184–185		
	office and manufacturing case 99–101		
	residential, office and entertainment complex case 207		
	sports stadium case 86–87, 91–92		
	irregularity of demand 121		
	joint investments by 34		
	low demands, uncertainties due to 85		
	mutuality 49–50, 60–61		
	partnering	long-term 33, 71	
		short-term 30–31	
		stated benefits 18	
		relative power 37–38, 38, 39	
		self-interest in 283	
		specialist requirements 74–75	
		supplier dominance 35, 37, 41, 42	
		erosion of 122–123	
		transactional exchange outcomes 55, 56, 57–59	
		win–partial win 74	
buyers	see also buyer-supplier relationships; suppliers		
	competencies 268–269		
	costs	changes to specifications 232	
		failure to minimise 101–102	
		dominance by 73, 270	
		errors, costs of 147, 148	
		functionality concerns 53, 53, 60	
		incident costs 147	
		income, by single project 119–120	
		information asymmetry 101	
		innovative 82–83, 144	
		leverage	by demand 79
			by reputation 72
			open-book costings 171, 181, 222, 244
Index

buyers (continued)
 ownership cost concerns 53, 53
 postcontractual problems 142
 power leverage 218–219
 professional services, reliance on
 70–71, 73–75
 project-by-project revenues,
 uncertainty of 97
 reactive supply chain sourcing
 losses 134–135, 138, 147–148, 150
 partial wins 102–104, 112–114, 123–124, 126
 win 74–75, 77, 88–89, 91
 relationships, long-term 143
 reputation enhancement 82, 187
 single sourcing, risks 168–169,
 171–172, 231–232
 site problems, costs of 246–248
 specialist advice, costs of ignoring 252, 255–256, 258, 260–263
 specialist knowledge, lack of extended 120

specifications
 changes to 131, 136
 highly specialist 80, 82
 supply chain sourcing 86
 tenders, acceptance of lowest 154,
 158–160
 time deadlines 217
 value capture by 62
 criteria 108
 post-contractual opportunism 111
 through over-specification 89–90
 utility 72–73

CAPEX expenditure 269–270, 273–274
cartels, quarry products, informal 122
chemical processing
 hazardous 94, 96
 health and safety 97, 98
 planning approval 94, 96

clients
 see also buyer-supplier relationships;
 buyers
 contractors
 problems between 10–11
 relationships 73–74
 selection of 19, 19n
 partnering, stated benefits 17, 18–19
 procurement routes, alternatives 20
 transferred learning 76
 value propositions 9

 collaborative relationships
 buyers-suppliers 38–40
downstream players 181
management
 difficulties in establishing 48–49
 incentives for 12
 principles 12
 trust and transparency in 49
competencies, managers 268–269
concrete
 pre-cast, advantages 180–181, 205
 ready-mix see quarry products
conflict
 and mutuality 58
 and trust and transparency 57
construction companies
 gatekeeping roles 5
 information asymmetry
 higher margins from 110
 leverage by 132
 integrations roles 5
 preferred contractors 142, 144, 181,
 193–194, 244
 top ten by turnover 109
construction industry
 agile approach 15–16, 271–272
 budgets exceeded 193
 definition 4
 demand segmentation 8n, 155,
 155n
 economic importance of 4
 fragmented nature of 108
 inefficiencies in 13–15
 innovation, expenditure on 5
 late delivery 193
 lean principles 15, 16
 one-off procurement 110
 partnering, stated benefits 16–18
 problems within 10–12
 short-termism within 7–8
 specialist 142
 temporary projects 7–8
construction management
 contingency approach 278–280, 281,
 282–283
 three competencies 268–269
construction process 7, 7
continuous project work, relational
 perspective 30
contractors
 clients
 problems between 10–11
 relationships 73–74
 selection by 19, 19n
 mechanical and electrical, ownership
 98n
subcontractors, problems between 10–12
suppliers, problems between 10–12
cost consultants
inadequate 239
independent, cost savings 75–76
supplier opportunism 231
cost management, through cost
consultancies 193
demand
regular non-standard 272–273
regular standard 272
demand frequency, as lever 171
demand profiles 269–270, 269
demand segmentation 8n, 155, 155n
demand and supply chains
one-off products 8
short-term nature of 3
design and build
contracts 181–182, 206
professional service providers 68
design services
limitations of 167
partnering, stated benefits 18
problems with 11
designs and specifications
environmental considerations 180, 229–230
failure to be proactive in 191
innovative 68, 70
tendering within 68
downstream players, collaborative
relationships with 181
dyads see buyer-supplier relationships
Egan Report 1998 13–15, 16
electrical generation see heavy engineering
plant case
environmental considerations, designs
and specifications 180, 229–230
equipment supply chains 6
errors
buyers, costs of 147, 148
suppliers, costs of 124, 125, 187, 188
exchange relationships, buyer-supplier
52–53
expenditure
CAPEX 269–270, 273–274
OPEX 269–270, 273–274
experts see professional service providers
feasibility, problems with 11
functionality concerns, buyers 53, 53, 60
gatekeepers, roles of 5
hand-over period, problems with 11
health and safety, chemical processing 97, 98
healthcare facility project
buyer profile 106, 108
buyer-supplier relationship 109–111
performance outcome 111–114
specification 106
summary 114–115
supplier profile 108–109
supply chains 107
heavy engineering plant case
buyer profile 131
buyer-supplier relationship 132–133
performance outcome 134–137
specifications 129–131
summary 137–139
supplier profile 131–132
supply chains 128
high street public house case
buyer profile 214, 216–217
buyer-supplier relationship 218–220
performance outcome 220–223
specification 214
summary 223–225
supplier profile 217
supply chains 215
housing development case
buyer profile 230–232
buyer-supplier relationship 234–235
performance outcome 235–239
specifications 227, 229–230, 230
summary 239–240
supplier profile 232–234
supply chains 228
ideal normative mutuality 59
independent cost consultants see cost
consultants, independent
information asymmetry 270
buyers 101
construction companies, higher
margins 110
integration, supply chains see supply
chains, integration
just-in-time (JIT) delivery 202, 204, 205
labour supply chains 6
landscaping
compatibility 70
conservation 70
Index

Latham Report 1994 13–15, 16
lead-times
 pipes 144, 149
 structural steelwork 83, 136–137
lean principles, construction industry 15, 16
lean relationships, proactive 271, 274
leisure and sports complex case
 buyer profile 255–256
 buyer-supplier relationship 256–258
 performance outcome 258–262
 specifications 253, 255
 summary 262–263
 supplier profile 256
 supply chains 254
location
 specialist requirements 122
 uncertainties 85
logistics warehouse case
 buyer profile 70–71
 buyer-supplier relationship 71–73
 case background 68, 70
 performance outcome 73–77
 relationship summary 77–78
 supplier profile 71
 supply chains 69
long-term relationships
 suppliers
 incentivisation through 168
 lack of 132, 145–146
lose–lose (negative-sum) outcomes
 proactive 259–263
 reactive 155, 157–161
lose–partial win (zero-sum) outcomes
 proactive 247–251
 reactive 147–150
lose–win (zero-sum) outcomes
 proactive 235–240
 reactive 134–139
loss leaders, by suppliers 59
manufacturing facility extension case
 buyer profile 152, 154
 buyer-supplier relationship 154–156
 performance outcome 156–160
 specifications 152
 summary 160–161
 supplier profile 154
 supply chains 153
materials supply chains 6
mechanical and electrical contractors
 100–101
 ownership 98n
 selection of 99
mechanical and electrical packages
 expenditure on 99n
 typical 94
motorway case
 buyer profile 119–120
 buyer-supplier relationship 121–123
 performance outcome 123–125
 specifications 116–117, 119, 119
 summary 125–126
 supplier profile 120–121
 supply chains 118
motorways, road structure 117, 119, 119
multi-storey car park case
 buyer profile 180–182
 buyer-supplier relationship 182–184
 performance outcome 184–187
 specifications 177, 179–180, 180
 summary 188–189
 supplier profile 182
 supply chains 178
mutuality
 see also nonzero-sum outcomes
 and conflict 58
 ideal normative 59, 280
 questioned as ideal 60
negative-sum (lose–lose) outcomes
 proactive 259–263
 reactive 155, 157–161
non-adversarial arms’-length relationship
 management 40
non-adversarial collaboration relationship
 management 40
nonzero-sum outcomes 56, 58
 as mutuality 57
 partial win–lose
 proactive 190–191, 220–225
 reactive 123–126
 partial win–partial win 49–50, 282
 proactive 201, 205, 208–212
 reactive 112–115
 partial win–win 49–50
 proactive 190–191, 197–200
 reactive 102–104, 123–126
win–partial win 49–50
 proactive 173–176
 reactive 74, 75, 77
office and manufacturing facility case
 buyer profile 97–98
 buyer-supplier relationship 99–101
mechanical and electrical supplies 94, 96–97
 performance outcome 101–103
Index

partial win–lose (nonzero-sum) outcomes, proactive 190–191, 220–225
partial win–partial win (nonzero-sum) outcomes 49–50, 282
proactive 201, 206, 208–212
reactive 112–115
partial win–win (nonzero-sum) outcomes 49–50
proactive 190–191, 197–200
reactive 102–104, 123–126
partnering as introduction to proactive management 280
proactive, benefits 49
relationships within 21
stated benefits 16–18
suppliers long-term 33
short-term 30–31
stated benefits 18
petrol filling station case buyer profile 242, 244
buyer-supplier relationship 245–246
performance outcome 246–250
specifications 242
summary 250–251
supplier profile 245
supply chains 243
planning approval
brownfield sites 94–96
city centre sites 202
housing developments 231
positive-sum (win–win) outcomes arguments for 50–51
criticisms of 51
definitions 52
interpretations of 51–52
unfeasibility of 49
power generation, options examined 129–130
power leverage approach 21
buyers 218–219
conflicting interests within 29, 133
definition 31
history of 29
long-term relationships 195–196, 216–217
pre-assembly, definitions 170
pre-cast concrete advantages 180–181, 205
frames, erection 182
prefabrication benefits of 169
definitions 170
market 169–170
timber houses 227, 229, 230
advantages 232–233, 233
costs 232
market shares 233–234
standardisation 231
zero defects aim 205
preferred contractors 142, 181, 193–194, 244
proactive partnering, benefits 49
proactive relationships lean relationships 271, 274
management options 269–270, 270, 277–278, 277
repeat games 271
agile relationships 271–272
proactive supplier development 43, 48
proactive supply chain sourcing apparent appropriateness of 268
benefits of 199–200
and collaborative approach 227
leverage through 216–217
long-term partnerships 214
proactive supply chain sourcing
(continued)

loose–lose outcome 252–263
loose–partial win outcome 241–251
loose–win outcome 226–240
partial win–lose outcome 213–225
partial win–partial win outcome 201–212
partial win–win outcome 190–200
supplier losses 223–224
win–lose outcome 177–189
win–partial win outcome 165–176

procurement
OJEC route 131
problems with 11
selection 19, 20

professional advice, cost of ignoring 252–253

professional service providers
architects 106
buyers, reliance on 70–71, 73–75
cost benefits of 67–68, 218
design and build 68
ignoring, penalties of 158–161
independent cost consultants 75–76
information asymmetries 110
integrated approach 129

opportunism
lack of awareness 134
prevention 72, 73, 106
specifications 96–97

profits
basic rationale of 49
suppliers’ concerns 53, 54

project variables
trade-offs 8, 9, 10
clients’ value propositions 9

public houses, management organisation 214, 216

quarry products
cartels, informal 122
definitions 117n
importance of 117
innovation 122
sourcing 116
transport distances 120–121

reactive relationships
management options 269–270, 270,
275–277, 276
short-term 67
reactive supply chain sourcing
loose–lose outcome 151–162

lose–win outcome 127–139
partial win–lose outcome 116–126
partial win–partial win outcome 105–115
partial win–win outcome 93–104
win–lose outcome 79–92
win–partial win outcome 67–78

relational perspective
collaborative relationships 31
definition 29–30
theoretical disagreements within 29
within continuous project work 30

relationship management styles
adversarial arms’-length 40
adversarial collaboration 40
non-adversarial arms’-length 40
non-adversarial collaboration 40

relationship portfolio analysis 39

reputation
buyers’ enhancement 82, 187
buyers’ leverage by 72
suppliers
and brand image 111
enhancement 77–78, 103, 138–139, 207
loss by errors 125–126

residential, office and entertainment
complex case
buyer profile 204–205
buyer-supplier relationship 206–207
performance outcome 207–210
specifications 201–202, 204
summary 211–212
supplier profile 205–206
supply chains 203

restaurant construction case
buyer profile 167–169
buyer-supplier relationship 170–172
performance outcome 172–175
specifications 165, 167
summary 175–176
supplier profile 168–170
supply chains 166
risk aversion, over-specification due to 131

short-term opportunism
extent of 3
as rational response 31
short-term reactive relationships 67
Index

suppliers (continued)

selection of 32–33, 32, 44, 104
reactive 151
robust 114–115
short-term 110, 156
sub-optimal 131–132
single sourcing, prevention of 168–169, 171–172
specialist
technical 98–99
uncertain revenues 84–85
steel, opportunism by 136–137
tenders, inadequate pricing details 158–160
value capture by 62
scarcity 72–73
supply chain management 32, 44
buyer dominance/interdependence 35, 37
definition 34–35
intensive sourcing approach 35
long-term collaborative 183
proactive 43, 48, 177
supply chain sourcing 32, 33–34, 44
buyers 86
proactive
lose–lose outcome 252–263
lose–partial win outcome 241–251
lose–win outcome 226–240
partial win–lose outcome 213–225
partial win–partial win outcome 201–212
partial win–win outcome 190–200
win–lose outcome 177–189
win–partial win outcome 165–176
reactive
lose–lose outcome 151–162
lose–partial win outcome 140–150
lose–win outcome 127–139
partial win–lose outcome 116–126
partial win–partial win outcome 105–115
partial win–win outcome 93–104
win–lose outcome 79–92
win–partial win outcome 67–78
sub-optimal reactive 143

transparency, importance of 257

supply chains

see also demand and supply chains;
suppliers; supply chain management
collaborative relationships 35
equipment 6

integrated management 5, 6, 13–15
trust within 19
integration
aerospace manufacturing facility case 191, 192
healthcare facility 106, 107
heavy engineering plant case 127, 128, 129
high street public house case 214, 215
housing development 227, 228
leisure and sports complex case 253, 254
manufacturing facility case 152, 153
motorway case 117, 118
multi-storey car park 177, 178, 179
office and manufacturing case 94, 95
petrol filling station case 242, 243
residential, office and entertainment
complex case 202, 203
restaurant construction case 165, 166, 167
sports stadium case 81, 82
warehouse construction case 69
water pipeline case 140, 141, 142
labour 6
materials 6
multiple 7–8
operational 37
professional service providers 70–71
specialist 81, 117, 118
tending lists 109
tenders
acceptance parameters 97, 98, 108
competitive, continuous 219
from detailed specifications 204
lowest, acceptance of 154, 157–160
pricing details 158–160
problems with 11
staged 204
within specifications 68
timber houses
advantages 232–233, 233
costs 232
market shares 233–234
prefabrication 227, 229, 230
time deadlines, buyers 217
‘traditional’ contracting 21
lack of communication in 167
transactional exchange outcomes 55, 56,
57–59
trust and transparency
as antidotes to conflict 57
in collaborative relationships 49
value capture
 by buyers 62
 through overspecification 89–90
 utility 72–73
by suppliers 62
 scarcity 72–73
water pipeline case
 buyer-supplier relationship 144–146
 construction firm profile 142–143
 performance outcome 146–149
 specifications 140, 142
 summary 149–150
 supplier profile 143–144
 supply chains 141
win–lose (zero-sum) outcomes
 acceptability of 50
 mutuality as superior to 60
 proactive 185–189
 reactive 56, 58, 87–92, 88
win–partial win (nonzero-sum) outcomes
 49–50
proactive sourcing 173–176
reactive sourcing 74, 75, 77
win–win (positive-sum) outcomes
 arguments for 50–51
 criticisms of 51
 definitions 52
 interpretations of 51–52
 unfeasibility of 49
zero defects, prefabrication aim 205
zero-sum (lose–partial win)
outcomes
 proactive 247–251
 reactive 147–150
zero-sum (lose–win) outcomes
 proactive 235–240
 reactive 134–139
zero-sum (win–lose) outcomes
 acceptability of 50
 mutuality as superior to 60
 proactive 185–189
 reactive 56, 58, 87–92, 88